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Abstract

In [Electromagnetics 23 (2003) 187], a technique for injecting perfect plane waves into finite regions of space in

FDTD was reported. The essence of the technique, called Field Teleportation, is to invoke the principle of equivalent

sources using FDTDs discrete definition of the curl to copy any field propagating in one FDTD domain to a finite

region of another domain. In this paper, we apply this technique of Field Teleportation to the original domain itself

to create a transparent boundary across which any outward traveling FDTD field produces an exact negative copy

of itself. When this copied field is teleported one cell ahead and one cell forward in time it causes significant self-canc-

elation of the original field. Illustrative experiments in two-dimensions show that a two-layer (10-cell thick) multi-stack

Radiation Boundary Condition (RBC) with a simplest Huygens�s termination readily yields reflection coefficients of the

order of �80 dB up to grazing incidence for all the fields radiated by a harmonic point source (k = 30 cells) in free space

located 20 cells away from the boundary. Similarly low levels of artificial reflection are demonstrated for a case in which

the RBC cuts through five different magnetodielectric materials.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Traditional Radiation Boundary Conditions (RBCs) for FDTD consist of algorithms for extrapolation

of the internal spatial-time field distribution into the boundary of the computational grid (enclosing the

grid). The two most popular techniques for implementing an RBC are mode-annihilating and one-way
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wave equation approximations. Both approaches are based on differential equations providing a local

approximation of the radiation properties that are inherent to Maxwell�s equations [2].
The RBCs most often referred to in the literature are those proposed by Engquist and Majda [3] with the

discretization derived by Mur [4]. These are based on an approximation of the outgoing wave equation by

linear expressions using either a Taylor or a Pade approximation. In the RBC proposed by Higdon a linear
superposition of plane waves has been considered for derivation of an exact annihilator operator at each of

the pre-selected incident angles [5]. An alternative approach has been followed by Fang and Mei [6], who

use RBCs to estimate both E and H field at a point on the boundary and then combine the results in such a

way as to improve the overall accuracy. The technique has been referred to as the Super Absorbing Cor-

rection. Deveze et al. [7] also use a combination of the E and H field arranged in a special way to reduce the

order of the derivatives that need to be evaluated.

Historically, RBC methods were very popular until the Perfect Matched Layer (PML) was proposed by

Berenger [8]. Since then, FDTD practitioners have concluded that superior field absorption can be achieved
by introduction of gradually absorptive materials rather than one-cell RBCs. The PML was derived initially

as a multi-cell absorption layer capable of absorbing outgoing waves in a wide range of incident angles.

However, implementing a PML is not a trivial undertaking, especially for the material intersections and

terminations.

Despite the popularity of the PML, efforts in RBC improvement and the quest for the best absorption

boundary condition continues. For example, Liao et al. [9] reported the superiority of their RBC based on

the measured equation on invariance in time domain (TDMEI) over the PML in a two-dimensional imple-

mentation. However, the TDMEI approach, based on storing a spatial-time history of the fields close to the
boundary up to seven time steps in the past, has quite a high computational cost [10].

Ergin et al. [11] presented their plane-wave time-domain scheme as an enhanced global exact RBC

method and reported results comparable to eight layer PML. Recently, a hybrid one-way Sommerfeld-

PML scheme has been proposed by Vay combining the flexibility of the PML and the simplicity of

one-way wave RBC [12]. However, the late-time performance of this scheme (stability) has not been

reported yet.

Recently, a new re-radiating boundary condition for terminating the FDTD grid has been reported in

[13] based on the discrete version of Schelkunoff�s equivalent currents (or so-called Field Teleportation
Technique). In this paper, we detail the derivation of the approach and demonstrate its capabilities through

illustrative numerical experiments. The Field Teleportation Technique was used in [1] to teleport perfect

plane waves into finite regions of FDTD with no leakage. Here, the RBC effect is obtained by teleporting

outgoing fields back into the FDTD domain with a negative sign, thus partially canceling outward traveling

waves.

Section 2 of this paper introduces a theory of discrete equivalent currents and shows how they can be

included in the regular FDTD update procedure and thus allows the teleportation of fields. Section 3 pre-

sents a recipe for RBC update inside the FDTD time-marching algorithm. In Section 4, the Field Telepor-
tation scheme is implemented within the source grid to create the multistack RBC (MS-RBC). After

comparing this technique with the standard PML in free space, we demonstrate its excellent performance

by terminating a domain with an inhomogeneous boundary between multiple regions of lossless and lossy

dielectrics.
2. Self-teleportation of fields

The surface equivalence theorem primarily introduced in 1936 by Schelkunoff plays an important role in

electromagnetic theory and applications. Modeling of electromagnetic scattering, diffraction and aperture

antenna problems are common examples of the theorem�s applications. According to the theorem, the field
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outside a source region surrounded by an imaginary closed surface S can be obtained by introduction, over

this surface, of equivalent tangential electric K
*

e and magnetic K
*

m current densities (sometimes called

Schelkunoff�s currents) [14]. The current densities are selected so that the fields inside the closed surface

are zero and outside are equal to the total field. These currents are related to the tangential fields on the

surface S by the following expressions:
Fig. 1.

is at (x
K
*

e ¼ n
_�~H tot; K

*

m ¼ � n
_�~Etot; ð1Þ
where n
_
is the outward surface normal to S. These equivalent currents constitute an impressed one-sided

source, that cancels its own fields inside the enclosed surface and produces outside an exact replica of the

original fields. Clearly, by reversing the sign of the impressed currents their self-canceling property inside S

is unaffected but now they produce outside S the negative of the original fields. Therefore, if these outside

fields were added to the original fields there would be destructive interference everywhere outside. This is an
ideal situation for an FDTD boundary condition.

Fig. 1 demonstrates an example of the FDTD Field Teleportation method for a two-dimensional rectan-

gular area, which is excited by a TE line source located at x = 50, y = 50 cell. A smooth bipolar pulse is

injected and the EM field propagates as a free cylindrical wave during the first 100 time steps. (For this

simulation dx = dy = ds, dt = ds/2c). The Field Teleportation technique has been used to generate an exact

negative replica of the outgoing wave measured at the plane x = 75 (measurement plane) and teleported 25

cells to the right (teleportation plane). The utilized algorithm creates strictly a one-sided wave (backward

leakage is negligible, less than �300 dB [1]) with opposite polarity to the original wave.
Since discrete equivalent currents are applied to create a soft one-sided source, the teleportation bound-

ary is transparent to waves from any direction (It does not affect any signal propagating through it). If we

move the teleportation plane towards the measurement one, the interference between the original and tele-

ported wave becomes more destructive (in the ideal case causing total suppression of the outgoing signal

when the planes coincide).
Example of the Field Teleportation of the cylindrical wave. The measurement plane is located at x = 75, the teleportation plane

= 100). An exact negative copy of the original wave is generated.
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The attainment of perfect cancellation forwards would then depend on exact spatio-temporal coinci-

dence of the original field and the teleported copy. Thus the RBC can be implemented using the discrete

version of Schelkunoff�s equivalent currents.
Let us consider a simple dispersive medium with permittivity e = e0er, permeability l = l0lr, electric and

magnetic conductivities re and rm, respectively. The Maxwell�s equations for the sourceless case have the
form:
l
o~H
ot

þ rm
~H ¼ � ~r�~E; ð2aÞ

e
o~E
ot

þ re
~E ¼ ~r� ~H : ð2bÞ
Let us suppose we have additional current sources, which are impressed electric J
*

e and magnetic J
*

m

currents. Then these impressed currents must enter into the right-hand sides of the curl equation as

follows:
l
o~H
ot

þ rm
~H ¼ � ~r�~E � J

*

m; ð3aÞ

e
o~E
ot

þ re
~E ¼ ~r� ~H � J

*

e: ð3bÞ
These equations being discretized in time by the classical FDTD scheme lead to following update

expressions:
~H
nþ1=2 � ~H

n�1=2
� �

þ rmDt
2l

~H
nþ1=2 þ ~H

n�1=2
� �

¼ �Dt
l

~r�~E
n

� �
� Dt

l
~Jm; ð4aÞ

ð~Enþ1 �~E
nÞ þ reDt

2e
ð~Enþ1 þ~E

nÞ ¼ Dt
e

~r� ~H
nþ1=2

� �
� Dt

e
~J e; ð4bÞ
where the upper index indicates the FDTD time step. Recognizing that in the discrete space of FDTD,
~J e ¼ ~Ke=ds;~Jm ¼ ~Km=ds, with ds being the size of the space cell, then substitution of J

*

e and J
*

m into (4a)

and (4b) gives
ð~Hnþ1=2 � ~H
n�1=2Þ þ rmDt

2l
ð~Hnþ1=2 þ ~H

n�1=2Þ ¼ �Dt
l

~r�~E
n

� �
� Dt
lds

~Km; ð5aÞ

ð~Enþ1 �~E
nÞ þ reDt

2e
ð~Enþ1 þ~E

nÞ ¼ Dt
e

~r� ~H
nþ1

2

� �
� Dt
eds

~Ke: ð5bÞ
Eqs. (5) after simplifications take the form:
~H
nþ1=2 ¼

1� rmDt
2l

1þ rmDt
2l

~H
n�1=2 � Dt

ðlþ rmDt=2Þ
~r�~E

n
� �

� Dt
dsðlþ rmDt=2Þ

~Km; ð6aÞ

~E
nþ1 ¼

1� reDt
2e

1þ reDt
2e

~E
n þ Dt

ðeþ reDt=2Þ
~r� ~H

nþ1
2

� �
� Dt
dsðeþ reDt=2Þ

~Ke: ð6bÞ
Expressions (6a) and (6b) differ from the conventional FDTD scheme only by the additional rightmost
terms and therefore can be implemented into the FDTD algorithm easily.



Fig. 2. Double RBC field termination implemented on the left side of the 2D domain, after H- and E-update loops.
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3. RBC-Updating scheme

In the proposed FDTD computer program, the implementation would be as follows. For the sake of

simplicity only the case of a 2D-space is given with the three field components Ez, Hx and Hy being con-

sidered. (This is the case where the electric field is transverse to the plane of incidence, or TE case). The

2D grid is an array with index i varying from 0 to nx + 1 in the x-direction, index j is changing from 0

to ny + 1 in the y-direction. Fig. 2 shows the FDTD cell with our indexing convention and terminating

on the left side in an RBC. The tangential field components Ez(3, j) and Hy(4, j) define the outermost meas-

urement plane whereas Ez(2, j) and Hy(3, j) constitute the corresponding teleportation plane (that is, the

RBC plane). Note, that the RBC plane is not coincident with the teleportation plane to avoid feedback
instabilities. A second RBC plane is separated from the first one by three cells to the right. A final Huy-

gens�s termination (explained below, see Eqs. (14) and (15)) is placed exactly at the left edge of the domain.

Table 1 presents the locations of the outermost RBC planes on the entire 2D domain, placed symmetrically

with respect to the center of the domain.

The time-loop (n = 0 , . . . , nt) starts with source field injection, followed by Hx- and Hy updating nested

loops. The FDTD algorithm then updates the magnetic fields according to the curl-equations:
Table

Locati

Left w

Right

Top w

Bottom
Hnþ1=2
x ði; jÞ ¼ Cmaði; jÞHn�1=2

x ði; jÞ � Cmbði; jÞðEn
z ði; jÞ � En

z ði; j� 1ÞÞ; i ¼ 1; . . . ; nx; j ¼ 1; ny þ 1;

ð7Þ
1

ons of the second RBC walls

H-update RBC loops E-update RBC loops

all Hy(8, j), j = 1, . . ., ny Ez(7, j), j = 1, . . ., ny

wall Hy(nx � 5,j), j = 1, . . ., ny Ez(nx � 5,j), j = 1, . . ., ny
all Hx(i, ny � 5), i = 1, . . ., nx Ez(i, ny � 5), i = 1, . . ., nx

wall Hx(i, 8), i = 1, . . ., nx Ez(i, 7), i = 1, . . ., nx
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Hnþ1=2
y ði; jÞ ¼ Cmaði; jÞHn�1=2

y ði; jÞ þ Cmbði; jÞðEn
z ði; jÞ � En

z ði� 1; jÞÞ; i ¼ 1; . . . ; nxþ 1; j ¼ 1; ny;

ð8Þ

where
Cmaði; jÞ ¼ 1� rmði; jÞDt
2lði; jÞ

� ��
1þ rmði; jÞDt

2lði; jÞ

� �
and Cmbði; jÞ ¼

Dt
lði; jÞds

� ��
1þ rmði; jÞDt

2lði; jÞ

� �
:

Now we update the tangential magnetic field on the RBC-planes at the same time step (T = n + 1/2). Fig. 2

(at theH-update stage) schematically shows the procedure for the left boundary. On the left and right exter-

nal RBC planes for all Hy-components inside the j-loop we have:
Hnþ1=2
y ð3; jÞ ¼ Hnþ1=2

y ð3; jÞ � AhlðjÞEn�1
z ð3; jÞ; j ¼ 1; . . . ; ny;

Hnþ1=2
y ðnx� 1; jÞ ¼ Hnþ1=2

y ðnx� 1; jÞ þ AhrðjÞEn�1
z ðnx� 2; jÞ; j ¼ 1; . . . ; ny;

(
ð9Þ
where
AhlðjÞ ¼
RDt

dsðlð3; jÞ þ rmð3; jÞDt=2Þ
; AhrðjÞ ¼

RDt
dsðlðnx� 1; jÞ þ rmðnx� 1; jÞDt=2Þ
and R is a damping factor introduced for a stability reasons (discussed below). Note, that impressed cur-

rents have been introduced as the negative copies (with the opposite sign) to the Schelkunoff�s equivalent
currents to cancel the outgoing waves. Since we measure the incident field one half-step ahead of the

RBC-wall, we have to take into account a time delay. Therefore, we use the delayed value En�1
z (electric

field at one time-step back). This assumption works perfectly for ds/cDt = 0.5 ratio (c is the speed of light

in the medium).

Of necessity the permittivity and conductivity associated with the two neighboring cells (where we meas-

ure the field and where we introduce the impressed currents) must be the same. That means that there is no

variation of the material parameters perpendicular to the plane, within two cells. However, this algorithm

allows arbitrary transverse variation of the material (along the wall). The bottom and top external RBC

planes are updated in the i-loop by the following equations:
Hnþ1=2
x ði; 3Þ ¼ Hnþ1=2

x ði; 3Þ þ AhbðiÞEn�1
z ði; 3Þ; i ¼ 1; . . . ; nx;

Hnþ1=2
x ði; ny � 1Þ ¼ Hnþ1=2

x ði; ny � 1Þ � AhtðiÞEn�1
z ði; ny � 2Þ; i ¼ 1; . . . ; nx;

(
ð10Þ
where
AhbðiÞ ¼
RDt

dsðlði; 3Þ þ rmði; 3ÞDt=2Þ
and AhtðiÞ ¼

RDt
dsðlði; ny � 1Þ þ rmði; ny � 1ÞDt=2Þ :
Late-time stability is a common problem for many RBCs and introduction of a damping factor is a usual

practice. The R coefficient ensures late-time stability of the proposed algorithm. This safety measure is

motivated by the fact that the impressed currents create energy, and truncation noise can therefore lead
the planes to create noise energy. In all numerical experiments performed to date decreasing the magnitude

of the impressed currents by 1% (or letting R = 0.99) is sufficient to ensure stability [13]. The reason such a

slight damping works is that the built in spatio-temporal delay in the recipe does not create a symmetric

boundary in FDTD. From the front side the RBC is an absorber and differentiator, from the back side

it is an imperfect integrator. As shown in [13], the combination of the RBC absorption (and differentiating

property) with the further absorption (and differentiation) at the Huygens�s termination results in an echo

that cannot be reconstructed on the way back through the RBC.

After the RBC updating step, we return to the conventional FDTD scheme. The Ez-component of the
electromagnetic field is updated next by the following expression, inside two nested loops:
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Enþ1
z ði; jÞ ¼ Ceaði; jÞEn

z ði; jÞ þ Cebði; jÞcurl H ; i ¼ 1; . . . ; nx; j ¼ 1; . . . ; ny; ð11Þ

where
curl H ¼ Hnþ1=2
x ði; jÞ þ Hnþ1=2

y ðiþ 1; jÞ � Hnþ1=2
x ði; jþ 1Þ � Hnþ1=2

y ði; jÞ;

Ceaði; jÞ ¼ 1� reði; jÞDt
2eði; jÞ

� ��
1þ reði; jÞDt

2eði; jÞ

� �
and Cebði; jÞ ¼

Dt
eði; jÞds

� ��
1þ reði; jÞDt

2eði; jÞ

� �
:

Right after the Ez updating part, the RBC Ez-updating loop follows (schematically shown in Fig. 2 as E-

update stage).

Let us consider the left-side termination again. The one time-step delayed Hy-component is transformed

into an impressed current and added to the Ez field component. Therefore, the updating equations for the
left and right external RBC planes are:
Enþ1
z ð2; jÞ ¼ Enþ1

z ð2; jÞ � AelðjÞHn�1=2
y ð4; jÞ; j ¼ 1; . . . ; ny;

Enþ1
z ðnx� 1; jÞ ¼ Enþ1

z ðnx� 1; jÞ þ AerðjÞHn�1=2
y ðnx� 2; jÞ; j ¼ 1; . . . ; ny;

(
ð12Þ
where
AelðjÞ ¼
RDt

dsðeð2; jÞ þ reð2; jÞDt=2Þ
and AerðjÞ ¼

RDt
dsðeðnx� 1; jÞ þ reðnx� 1; jÞDt=2Þ :
Here the parameter R is the same as in the previous case. Similarly, the update equations for the top and
bottom external RBC planes are as follows:
Enþ1
z ði; ny � 1Þ ¼ Enþ1

z ði; ny � 1Þ � AetðiÞHn�1=2
x ði; ny � 2Þ; i ¼ 1; . . . ; nx;

Enþ1
z ði; 2Þ ¼ Enþ1

z ði; 2Þ þ AebðiÞHn�1=2
x ði; 4Þ; i ¼ 1; . . . ; nx;

(
ð13Þ
where
AetðiÞ ¼
RDt

dsðeði; ny � 1Þ þ reði; ny � 1ÞDt=2Þ and AebðiÞ ¼
RDt

dsðeði; 4Þ þ reði; 4ÞDt=2Þ
:

Strictly speaking, we have not terminated the Ez-field completely but just suppressed it substantially. The Ez

fields at the edges of the domain have not been updated yet. In fact they are not updated in the ordinary

sense but rather are used to implement a very simple domain termination we call the Huygens�s termination.

This termination simply gives these Ez fields at every time step the value required to mimic an outgoing

normal incidence plane, wave given the value of the tangential H-field immediately inside the boundary.

Thus for these fields we assume E = gH, where g is the characteristic impedance of the media. Using the

time-domain analogue of the well-known expression for the complex permittivity and permeability in fre-

quency domain, we will have:
Enþ1
z ð0; jÞ ¼ gð0; jÞHnþ1=2

y ð1; jÞ; j ¼ 1; . . . ; ny;

Enþ1
z ðnxþ 1; jÞ ¼ �gðnxþ 1; jÞHnþ1=2

y ðnxþ 1; jÞ; j ¼ 1; . . . ; ny

(
ð14Þ
and for the top and bottom termination correspondingly:
Enþ1
z ði; ny þ 1Þ ¼ gði; ny þ 1ÞHnþ1=2

x ði; ny þ 1Þ; i ¼ 1; . . . ; nx;

Enþ1
z ði; 0Þ ¼ �gði; 1ÞHnþ1=2

x ði; 1Þ; i ¼ 1; . . . ; nx;

(
ð15Þ
where
gði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lði; jÞ þ rmði; jÞDt
eði; jÞ þ reði; jÞDt

s
:
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As it has been mentioned before, due to the small phase and magnitude mismatch between the original

and the teleported field, only one RBC plane does not suppress the outgoing field completely, there is al-

ways some transmission through the boundary. The remainder looks like a dim version of its first time

derivative. Original results reported in [13] show that a pulse encountering the RBC teleportation boundary

from the wrong side would be expected to undergo re-integration but in strange way, since portions of the
pulse that have crossed the boundary find themselves teleported back behind where they first entered the

boundary, actually creating excess energy. If we did not have the one-time-step delay buffer in the recipe,

this would constitute a fatal flaw in the RBC. That delay reduces this backwards interaction to a mild re-

integration of the pulse. As it has been shown in [13], the biggest problem with pulses entering the proposed

RBC boundary from the wrong side is their dc content. Fortunately, on the way forward, the differentiating

property of the RBC strips off most of the dc content of all signals.

A stack of RBC-walls can be employed to get better absorption. Two or three RBC planes give a rea-

sonable absorption for many practical applications. We have found that two neighbor RBC planes should
be separated by at least two cells. However, at this distance the two walls are coupled through the curl so

that for maximum late-time stability we recommend a three-cell separation. In our modeling, we use two

RBC-walls plus the Huygens�s termination that result in a 10 cells absorption layer on each side. (This is

counting the teleportation source cells and the last cell in the domain as part of the wall.)
4. Numerical results and discussion

As can be seen from the programming rules given above, we do not teleport the field back onto the

source cells. This is because it turns out that field teleportation back onto the source walls leads to blow-

ing-up of the solution since the algorithm gets caught in a feedback loop. Therefore, we teleport the copied

fields one cell beyond where they were collected and compensate for this one cell shift by storing the fields

one step in time in the past. This means that the cancellation is not perfect, but it is very good (typically of

the order of �20 dB, time domain average, per wall). To obtain deeper cancelation RBC walls can be cas-

caded one behind the other as described above. For the sake of clarity, this chapter is divided into three

sections describing different numerical experiments.

4.1. ‘‘Anechoic-chamber’’ test

To demonstrate the difference between one- and two-walls of the RBC, we model a two-dimensional

‘‘anechoic chamber’’ in free space. A square 2D X–Y domain 200 by 200 cells in area was alternately sur-

rounded with one or two RBC walls. A z-directed electric field is injected exactly in the center of the domain

having a time dependence of the form:
pulse ¼ sin3ð2pn=60Þ; 0 6 n 6 60;

pulse ¼ 0; n > 60;

(

For all the following examples ds/cdt = 0.5. The total energy within the domain (normalized to its maxi-

mum value) as a function of the time step n, for both cases, is shown in Fig. 3. The positions of the second
(internal) RBC wall for each side are given in Table 2.

Fig. 3 shows that the one-wall RBC approximately gives �40 dB in total energy suppression per bounce

(�50 dB for 2-walls). The stair-casing of the curves is caused by the subsequent bounces of the residual

echo. However, there is no big difference in the residual energy for the late time. Notice, that

gauging the performance this way measures the absorption in the time domain and not at any particular

frequency.



Fig. 3. Stored energy versus time step for 1-wall (squares) and 2-walls RBCs for the anechoic chamber modeling.
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To illustrate the late-time stability of the proposed algorithm for a bipolar excitation (no dc content), a

numerical comparison of the RBC and the unsplit PML for extremely long run times is considered. No spe-

cial attempts have been made to optimize either RBC or PML in this testing configuration. The 2D-TE
code with PML from Sullivan�s book [15] has been employed ‘‘as is’’ with a soft signal injection. The unsplit

PML (UPML) scheme employs a cubical law of conductivity. A comparison between 2-walls RBC and 10-

cells UPML has been done for the same ‘‘anechoic chamber’’ configuration. The ds/cdt = 0.5 rule has been

used for the cases. Fig. 4 shows the results. The proposed RBC absorbs outgoing waves much better than

tested UPML up to one thousand time steps, giving �75 dB attenuation after a second echo reflection (�50

dB for the UPML). In the late time, there is no big difference in the residual field left in the room, between

UPML and RBC. This suggests that this field is due purely to truncation noise. This simulation is an illus-

tration of the adequacy of the R = 0.99 factor to prevent long-time instability for any bipolar symmetrical
excitation. However, given that the recipe has integrator-like properties (albeit imperfect) from the wrong

side of the boundary, a complete the study on the long term stability of the RBC will require further numer-

ical experiments with pulses containing significant dc content.

It should be noted that the proposed multi-stack RBC algorithm consumes less computer time and mem-

ory than the UPML. A 6000 time steps anechoic chamber test run took 330 s for the RBC scheme and 583

for the UPML (and used 12 Mb memory versus 20 Mb for the UPML.) For our FDTD modeling, an ordi-

nary Dual Athlon PC 1.5 GHz has been used (no special attempts, like parallel code execution were taken

to give an advantage to either code).
Table 2

Locations of the RBC walls (nx = 200, ny = 210)

H-update RBC loops E-update RBC loops

Left wall Hy(3, j), j = 1, . . ., ny Ez(2, j), j = 1, . . ., ny

Right wall Hy(nx � 1, j), j = 1, . . ., ny Ez(nx � 1,j), j = 1, . . ., ny
Top wall Hx(i, ny � 1), i = 1, . . ., nx Ez(i, ny � 1), i = 1, . . ., nx

Bottom wall Hx(i, 3), i = 1, . . ., nx Ez(i, 2), i = 1, . . ., nx



Fig. 4. Comparison between 10-cells UPML and 10-cells RBC performance for the abechoic chamber modeling.
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4.2. Shallow-angle reflection test

Absorption performance for a wide range of incidence angles is still a subject of investigation and mode-

ling for many researchers. Shallow angle incidence remains a big challenge for developing a good absorp-

tion layer, especially if it cuts through different materials. Simultaneous comparison of near-field and

shallow angle absorption between the proposed RBC and the UPML can be obtained using the numerical

experiment illustrated in Fig. 5. Again 2D-TE FDTD is used. A rectangular area (1050 by 700 cells) is ter-
minated by the two-walls RBC and contains a point source, located either in the point Sr (i = 700, j = 350)

or in the point Sm (700,30). Smooth injection of a continuous cylindrical wave sin(2pn/60)(n2/(n2 + 60)) has

been applied for the Ez component of the field. The measurement area is a rectangular region 590 by 40 cells

located close to the source. (This corresponds to a period of 60 dt, or 30 cells per wavelength.)

For the first reference configuration (source is in the Sr point), the field in the measurement area is unaf-

fected by the boundaries during the first 1200 time steps, since it takes about 1360 time steps for an echo to

reach the measurement area after reflecting of the RBC boundary. Performing the windowed Fourier

Transform for every cell in the measurement area and storing data as a two-dimensional Ez magnitude dis-
tribution we develop a reference or free-space field distribution. Then, moving the source and the test region

toward the ABC layer (second configuration) introduces into the measurement area the signal reflected

from the bottom absorbing boundary. Comparison between the first and second results measures the
Fig. 5. Scheme of the numerical experiment S-initial source position, (b) the source is close to the ABC layer.



Fig. 6. The difference in the near-field magnitude introduced by 10-cells UPML over the measurement area (the reference�s maximum

magnitude is one unit). The source is at x = 700, y = 50.

186 R.E. Diaz, I. Scherbatko / Journal of Computational Physics 203 (2005) 176–190
quality of absorption over the wide range of incident angles represented by the measurement area (roughly

from 30� to 88�).
Fig. 6 shows the error between the complex field magnitude Em(x, y) in the presence of the 10-cells PML

and the reference distribution Er(x, y), calculated as 20log(|Er � Em|). The tested UPML heavily perturbs

the near field and strongly decreases the magnitude of the field for shallow angles of the incidence. The

worst case error introduced by the UPML into the measurement is about �15 dB. Fig. 7 shows the results

of the numerical experiment for the two-walls RBC. The near-field perturbation for the RBC case is about
�30 dB and occurs only for very shallow incidence angles (hinc P 80�).

For ease of illustration this and the following experiments were performed with harmonic sources and

relatively high resolution (30 cells per wavelength). As is obvious from the RBC recipe, the attenuation oc-

curs in real time in the time domain. In [13], the normal incidence reflection coefficient of a two-stack RBC
Fig. 7. The difference in the near-field magnitude introduced by 2 wall-RBC over the measurement area (the reference�s maximum

magnitude is one unit). The source is at x = 700, y = 50.



Fig. 8. Geometry of the test problem for RBC field termination in different materials.
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terminated with a Huygen�s wall is shown to saturate at �80 dB at very long wavelengths (because of the

R = 0.99 limitation), then it rises gently to �60 dB around 90 cells per wavelength, �40 dB around 9 cells

per wavelength and �20 dB at the grid cutoff.

4.3. RBC cutting trough inhomogeneous media

A more challenging problem for Absorbing Boundary Conditions is that of terminating an inhomoge-

neous domain. Fig. 8 shows a test geometry for illustrating RBC field termination in different materials.

The square area (700 by 700 cells) is occupied by four different materials (numbered from 1 to 4) and a

free-space center region. The point source is placed exactly in the center of the area. Similarly to the pre-

vious case, when the continuous wave source turns on, the cylindrical wave is generated and propagates

outward from the center. At least 700 time steps pass before the wave sees any influence from the external

boundaries. If we store the time history of the propagating wave in a smaller rectangular region (the tested

area) and perform the windowed Fourier Transform, we will have a reference field distribution inside this
zone.

However, if we introduce the RBC walls together with Huygens�s termination around this tested area

(shown as hatched border), the field inside the tested area will be corrupted somehow by reflections from

the introduced ABC. Comparison between the RBC-terminated and reference field distribution gives the

error introduced by the proposed RBC.

The frequency of the injected signal has been chosen as f = 10 GHz, that gives Dt = 1.25 ps and Ds = 0.75

mm. Table 3 gives the parameters of all materials used in this case.
Table 3

The parameters of materials

Material # er re (S/m) lr rm (X/m)

1 3 0.1 1 0

2 2 0.1 2 0.1

3 2 0 1 0

4 3 0 2 0.1



Fig. 9. The Ez component distribution (after the Fourier Transform) in the tested area.
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Fig. 9 is the baseline, showing the reference Ez field distribution in the tested area. Since the maximum
field magnitude in the source point is very strong compared to those in the surrounding materials, the color

intensity corresponding to the strongest field is saturated. The material interfaces are shown as dashed lines.
Fig. 10. The reflection from 2-walls RBC (introduced error) in the tested area in the case of multiple material boundaries.
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Fig. 10 shows the spatial distribution of the signal reflected from the RBC after subtracting the baseline

(that is, the introduced error). The reflection from the RBC which cuts through five different materials does

not exceed �65 dB. The highest reflection occurs from the 4th material, which has the highest refractive

index n ¼ ffiffiffiffiffiffiffiffi
erlr

p � 2:45 and where the ratio nDs/(cDt) is much higher than the free space 0.5 value.

The results of Fig. 10 show that the proposed multi-stack RBC cuts transparently through all media.
This is clear from the smooth way the contours of the residual scattered energy in Fig. 10 cross the material

boundaries. There is no scattering source associated with any of the transitions from material to material.

For the RBC, since the attenuation of the outgoing waves is created by exact FDTD copies of the incident

waves, impedance matching occurs automatically. No special actions different from the regular FDTD

updates have to be taken to update the field on the RBC, since the algorithm is independent of transverse

variation of parameters along the RBC plane. No special treatment is required for corners since the indi-

vidual RBC walls simply cut through each other transparently.
5. Conclusion

In this paper, the Field Teleportation principle, based on discrete equivalent currents, has been success-

fully applied for developing a new FDTD absorption boundary condition, called a multi-stack Radiation

Boundary Condition (MS-RBC). It consists of one or more teleportation boundaries that create field can-

cellation by radiating forward a negative copy of the fields incident upon the boundary, and a grid termi-

nation condition such as a Huygens�s wall. Because the RBC uses the discrete curl of FDTD and the fields
created inside the FDTD space itself, it matches the FDTD grid in all respects (including grid dispersion,

material dispersion, and propagation anisotropy). Therefore the proposed MS-RBC provides a transpar-

ent, and innocuous boundary for the termination of the FDTD grid. The only reflection from the telepor-

tation boundary is truncation noise, as is common with the FDTD grid itself, because Schelkunoff�s
equivalent currents do not radiate backwards. Thus the only source of reflection is the damped reflection

from the Huygens�s wall at the end of the grid. The spatio-temporal asymmetry of the recipe prevents this

reflection from being re-amplified as it travels backwards through the RBCs, yielding a net absorption of

the order of �80 dB for a stack of two RBC boundaries, up to shallow angles. The MS-RBC is near-field
innocuous because the teleportation scheme does not cause any reaction on the source field, even when that

source field is a reactive near-field or an evanescent surface wave. Good shallow angle absorption has been

demonstrated. In addition, the MS-RBC is straightforward to program requiring no selection of a conduc-

tivity gradient and no special treatment of corners. Finally, it consumes less computational resources than

the unsplit PML. We anticipate that the MS-RBC technique can be used independently as well as together

with other FDTD ABCs strongly enhancing their performance.
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